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Abstract. An infinite-dimensional algebraic approach is introduced to derive exact particle-
number conserving solutions of the nuclear mean-field plus orbit-dependent pairing Hamiltonian.
As an example, exact solutions of a model Hamiltonian for ds-shell nuclei are compared with
shell-model and equal strength pairing calculations for18−26O isotopes.

1. Introduction

Pairing, in addition to the quadrupole–quadrupole interaction, is an important interaction in
nuclear physics. The concept was proposed by Racah as a seniority scheme in atomic physics
[1]. Its physical significance was first realized in superconductivity studies [2]. Following
the suggestions of Bohret al [3], the first detailed application of pairing to nuclei was
made by Belyaev [4]. The concept has since been applied to other phenomena: highTc

superconductivity [5, 6], applications using the Hubbard model [7], and pairing phenomena in
liquids [8] and metal clusters [9].

In nuclear physics applications, mean-field approximations are usually supplemented
with residual interactions, the short-range pairing interaction being the one most commonly
used. In this case, the problem is usually handled approximately by using Bardeen–Cooper–
Schrieffer (BCS) or Hartree–Fock–Bogolyubov (HFB) methods, sometimes in conjunction
with correction terms evaluated within the random-phase approximation. However, when
BCS or HFB methods are applied to nuclei there are some serious drawbacks. First of all, not
only is the number of nucleons in a nucleus typically small, the number of valence particles
(n ∼ 10) which dominate the behaviour of low-lying states is too few to support the underlying
assumptions of the approximations, specifically,δn/n is not negligible. As a result, particle-
number-nonconservation effects enter and can lead to serious difficulties, such as spurious
states, nonorthogonal solutions, etc. Furthermore, an essential feature of pairing correlations
are differences between neighbouring even and odd mass nuclei, which are driven mainly by
Pauli blocking. It is difficult to treat even–odd differences with these methods because different
quasi-particle bases must be introduced for different blocked levels. Another problem with
approximate treatments of the pairing Hamiltonian is related to the fact that both the BCS and
the HFB approximations break down for an important class of physical situations. A remedy in
terms of particle number projection techniques complicates the algorithms considerably, and
does not help to achieve a better description of the higher-excited part of the spectrum of the
pairing Hamiltonian. For these reasons, a particle-number-conserving method for handling the

† On leave from the Department of Physics, Liaoning Normal University, Dalian 116029, People’s Republic of China.

0305-4470/99/061065+08$19.50 © 1999 IOP Publishing Ltd 1065



1066 F Pan and J P Draayer

pairing problem, when feasible, even if only approximate, is an appropriate way to probe the
true nature of pairing effects in nuclei. Over the past few years some progress has been made
in the development of better algorithms that bypass the Bogolyubov transformation and are
thus free from problems related to particle number nonconservation. For instance, a particle-
number-conserving method for treating the pairing problem for well-deformed nuclei was put
forward in [10]. The method uses a configuration-energy truncation scheme and takes the
strength of the pairing interaction to be the same for all orbitals. Unfortunately, because of
the deformation, each orbital can only accommodate a single pair of particles and this limits
the applicability of the theory. Very recently, a Fock-space diagonalization of the pairing
Hamiltonian, also for deformed nuclei, was proposed that used some symmetry properties and
a many-body Fock-space basis cut-off [11].

In the following, we will propose a new particle-number conserving method for the
pairing problem. In this paper, we will mainly emphasize mathematical formalism. Further
applications of this method to realistic nuclear pairing problems will be discussed elsewhere.

2. Separable strength pairing Hamiltonian

The general pairing Hamiltonian for spherical nuclei can be written as

Ĥ =
∑
jm

εja
†
jmajm −

∑
jj ′
cjj ′S

+(j)S−(j ′) (1)

where theεj are single-particle energies andS±(j) andS0(j) are the pairing operators for a
single-j shell defined by

S+(j) =
∑
m>0

(−)j−ma†
jma

†
j−m

S−(j) =
∑
m>0

(−)j−maj−majm
S0(j) = 1

2

∑
m>0

(a
†
jmajm + a†

j−maj−m − 1) = 1
2(N̂j −�j).

(2)

In (2),�j ≡ j + 1
2 is the maximum number of pairs in thej th shell,N̂j is the particle number

operator for thej th shell, andcjj ′ is the strength of the pairing interaction between thej and
j ′ shells.

In general, fork pairs, Hamiltonian (1) can be diagonalized in bases states that are products
of the single-j shell pairing wavefunctions:

|k〉 =
∑
ki

Bk1k2···kpS
+k1(j1)S

+k2(j2)S
+k3(j3) . . . S

+kp (jp)|0〉 (3)

where the summation is restricted by
p∑
i=1

ki = k (4)

p is the total number of orbitals, theBk1k2···kp are expansion coefficients that need to be
determined, and|0〉 is the pairing vacuum state which satisfies the condition

S−(j)|0〉 = 0 for all j. (5)

Though simple to formulate, this problem is algebraically intractable because there are
no analytic expressions or recursion relations for determining theBk1k2···kp coefficients.
Furthermore, the number of singlej -shell basis vectors included in (3) has to be fixed on
a case-by-case basis because of the Pauli principle.
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As an approximation to the general theory, we assume a separable strength pairing (SSP)
interaction,cjj ′ = cj c∗j ′ . Though strong, this assumption is physically motivated because it
links the pair–pair interaction strength to the individual pair formation probability. In this case,
|cj |2/

∑
j ′ |cj ′ |2 gives the percentage of single-j shell pairing in the Hamiltonian. Furthermore,

it is expected to be better than the equal strength pairing approximation for whichcjj ′ = |G|
for all orbitals. The equal strength pairing (ESP) approximation has been commonly used in
many applications because it is much simpler than the general case.

To diagonalize the SSP Hamiltonian, we need to introduce the following two-parameter
algebra generated by{Sµmn;µ = 0,+,−;m, n = 0, 1, 2, . . .} with

S+
mn =

∑
j

εmj |cj |2ncjS+(j)

S−mn =
∑
j

εmj |cj |2nc∗j S−(j)

S0
mn =

∑
j

εmj |cj |2nS0(j).

(6)

It is easy to show that these generators satisfy the following commutation relations:

[S+
mn, S

−
m′n′ ] = 2S0

m+m′n+n′+1

[S0
mn, S

±
m′n′ ] = ±S±m+m′n+n′ .

(7)

Therefore, theSµmn form an infinite-dimensional algebra, which is a Lie algebra of the two-
parameter affine type without central extension. The Hamiltonian (1) withcjj ′ = cj c∗j ′ can be
written in terms of theSµmn operators as

Ĥ =
∑
j

εj�j + 2S0
10− S+

00S
−
00. (8)

In the following, we assume that the parametersεj andcj are all different for differentj
values, that is, we only consider the nondegenerate case. The situations are different for the
degenerate and other simpler cases and these will be discussed later. For the nondegenerate
case, the unique lowest-weight state is simply the product of the single-j shell pairing vacua
with arbitrary seniority quantum numbers. Therefore, it suffices to consider the total seniority
zero case. The lowest-weight state satisfies

S−mn|0〉 = 0 ∀m, n. (9)

It seems that a two-parameter Bethe ansatz wavefunction might be needed in this case.
However, a careful analysis shows that the following one-parameter Bethe ansatz suffices
to diagonalize the Hamiltonian (8):

|k〉 = NS+(x1)S
+(x2) . . . S

+(xk)|0〉 (10)

whereN is the normalization constant. It is assumed thatS+(xi) can be expanded in terms of
S+
m0 near thexi ∼ 0 region as

S+(xi) =
∑
n

xni anS
+
n0 (11)

whereani S
+
ni0

are Fourier–Laurent coefficients in the expansion ofS+(xi), namely,

ani S
+
ni0 =

1

2π i

∮
0

dxi x
ni
i S

+(xi). (12)

The wavefunctions given by (10) are similar to the algebraic Bethe ansatz [12] which has
been proven to be a very useful and powerful tool for solving various spin-chain models and
one-dimensional many-body problems [13].
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To determine the operatorsS+(xi) and thec-number variables{xi; i = 1, 2, . . . , k}, we
first expand (10) in terms of thexi aroundxi = 0,

|k〉 =
∑
ni

x
n1
1 x

n2
2 . . . x

nk
k an1an2 . . . ankS

+
n10S

+
n20 . . . S

+
nk0|0〉. (13)

However, when one applieŝH on (13), the result will not only consist of vectors spanned by a
linear combination of products ofS+

ni0
, but also consist of those ofS+

ni1
. It can also be proved

that the results will no longer be algebraically closed, if the whole family of the generators
S+
mn given by (6) is used instead of only{S+

n0} assumed in (13). Though in both cases the basis
vectors spanned byS+

n0 andS+
n1 are within the same Hilbert subspace, of which both can be

expanded in terms of single-j pairing operatorsS+(j), the parametrization ofS+
n0 andS+

n1 is
different, namely

S+
n0 =

∑
j

εnj cjS
+(j) (14a)

while

S+
n1 =

∑
j

εnj |cj |2cjS+(j). (14b)

However, this difficulty can be overcome if the parameters|cj |2 can be expressed in terms of
a simple analytical function ofεj . Therefore, there is freedom to choose a simpler relation
between|cj |2 andεj . We found that the following auxiliary relations are not only possible,
but also convenient:

p∑
i=1

bi

1− εj zi = |cj |
2 j = 1, 2, . . . , p (15)

where{bi, zi; i = 1, 2, . . . , p} arec-numbers that need to be determined. Because we have
assumed theεj andcj are all different for differentj values, (15) is always valid. However, it
should be stated that the choice of condition (15) is not unique. Different choices will lead to
different versions of the Bethe equations. Of course, the final results for the eigenvalues must
be the same, and the corresponding eigenvectors should be equivalent up to a normalization
factor. As is well known, the Bethe ansatz consists of two parts. One is proportional to the
Bethe wavefunction (13), while the other part will containk terms not having the initial Bethe
form, which are the so-called unwanted terms. The condition of cancellation of these terms
imposes some special conditions, which are commonly known as Bethe ansatz equations. The
choice of (15) has been made in order to derive the Bethe ansatz equations from those unwanted
terms uniformly. Using (13)–(15) and commutation relations (7), one can prove thatan is an
n-independent factor, andxi , bj , andzj , must satisfy the following relations:

Ek =
k∑
i=1

2

xi
(16a)

2

xi
=
∑
j ′

�j ′ |cj ′ |2
εj ′xi − 1

+ 2
∑
j 6=i

(∑
m

bmxj

xj − zm + 1

)
xj/(xj − xi) (16b)

for i = 1, 2, . . . , k, whereEk is thek-pair excitation energy, under the conditions
p∑
i=1

bi

1− εj zi
∑
r>q

z2
i

(xr − zi)(xq − zi) =
∑
r>q

1

(1− εjxr)(1− εjxq) (17)

for j = 1, 2, . . . , p. Though these relations were derived forxi ≈ 0, they are valid in the
entire complex plane. Therefore, the coefficientsxi (i = 1, 2, . . . , k), zj , bj (j = 1, 2, . . . , p),
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and eigenvalues of the pairing energy are simultaneously determined by the system of
equations (15)–(17).

Let

Uji = bi

1− εj zi Wi =
∑
r>q

z2
i

(xr − zi)(xq − zi) Vj =
∑
r>q

1

(1− εjxr)(1− εjxq) .

(18)

Then the auxiliary conditions (15) are just unity conditions for the transformation matrixU ,∑
i

Uji

|cj |2 = 1 for j = 1, 2, . . . , p (19)

and (17) is a ‘linear transformation’ from vectorW to V ,∑
i

UjiWi = Vj for j = 1, 2, . . . , p. (20)

It can easily be seen that equations (15)–(17) are necessary and sufficient conditions for
solving the eigenvalue problem. Finally, the operatorS+(xi) can now be written explicitly as

S+(xi) =
∑
j

cj

1− εjxi S
+
j . (21)

If the parameters{cj } are all real, one can define the following operators:

S+
n (xi) =

∑
j

cnj

1− εjxi S
+
j

S−n (x) = (S+
n (x))

† S0
n(x) =

∑
j

cnj

1− εjx S
0
j .

(22)

These operators generate a nonlinear algebraG(SU2), which is an infinite-dimensional
extension to the Gaudin algebra given in [18]. The commutation relations of the generators
given in (22) are

[S+
m(x), S

−
n (y)] =

2

x − y (xS
0
m+n(x)− yS0

m+n(y))

[S0
m(x), S

±
n (y)] = ±

1

x − y (xS
±
m+n(x)− yS±m+n(y)).

(23)

These relations together with the auxiliary relations (15) can be used to verify that the Bethe
ansatz equations (16) and (17) are indeed valid, which justifies that the Bethe ansatz equations
are valid in the entire complex plane. (23) can also be used to calculate matrix elements of
physical quantities in the model.

So far we have assumed that theεj andcj are all different for differentj values. When
theεj are all the same or thecj are all the same the situation is greatly simplified [14]. These
special cases can be regarded as limiting cases of the Hamiltonian (8). It should be pointed
out that the exact solutions for the equal strength pairing limit case withcjj ′ = |G|, which is a
special case of the SSP model, was studied by Richardson [15, 16] in terms of boson mappings
including the effect of the Pauli principle. That result can now be obtained more simply and
directly by using the infinite-dimensional algebraic approach.
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Figure 1. Comparison of realistic shell-model results and spectra of the SSP and ESP Hamiltonians
as a function of the number of neutron pairs in the ds-shell.

3. Applications for ds-shell nuclei

To demonstrate the effectiveness of the theory as well as the accuracy of the SSP assumption we
considered the case of neutrons in the nuclear ds-shell with the 0d5/2, 0d3/2, and 1s1/2 orbitals
all active, which can be used to describe oxygen isotopes16−26O. The neutron single-particle
energiesεj were taken from the energy spectra of17O (ε1/2 = −3.273 MeV,ε3/2 = 0.941 MeV,
andε5/2 = −4.143 MeV). These values are all relative to the binding energy of16O, which was
taken to be zero. The two-body terms of the general pairing Hamiltonian (1) were obtained from
theJ = 0 two-body matrix elements of the universal ds-shell Hamiltonian of Wildenthal [17].
Thus, thecjj ′ parameters (in MeV) in the shell model (SM) arec 1

2
1
2
= 2.125,c 3

2
3
2
= 1.092,

c 5
2

5
2
= 0.940, c 1

2
3
2
= 0.766, c 1

2
5
2
= 0.765, c 3

2
5
2
= 1.301. While in (8) the single-particle

energies are taken to be the same as those of the SM, the parametercj in the SSP were adjusted
to give a best fit to experimental data, which givesc 1

2
= 0.70 MeV

1
2 , c 3

2
= 1.15 MeV

1
2 ,

c 5
2
= 1.048 MeV

1
2 . We also calculated energy levels in the ESP approximation, with the

single-particle energies also taken to be the same as those of the SM, the parameter|G| was
adjusted to give the best fit. The quality of the fits are indicated by the quantity

σ =
(

1

N

∑
i,total

|ESM(i)− Ecal|2
)1/2

(24)

whereN is the total number of the energy levels included in the fit. Because only theJ = 0
pairing interaction is considered, even the SM results show deviations from experimental data.
This is due to missing residual interactions which could, presumably, be treated by perturbation
theory. The real test is how well SSP reproduces the SM results. Therefore, only seniority
zero 0+ levels calculated by using SM, SSP, and ESP are shown in figure 1. The calculation
results yieldedσ = 0.631 MeV for SSP andσ = 0.824 MeV for ESP. The results show that
the SSP assumption is a rather good approximation, better than the ESP approximation. The
binding energies of18−26O are also calculated by using SM, SSP, and ESP. These calculated
results and the corresponding experimental values are shown in table 1. From the SM results,
it can be seen that the residual interaction has a little effect on ground states of the oxygen
isotopes. It is very clear that for all measures the SSP results are close to those of the SM,
closer than those of the ESP limit.
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Table 1. Binding energies (in MeV) of18−26O.

Nucleus Experiment SM SSP ESP

18O 139.81 140.22 140.35 140.20
19O 143.76 143.20 143.18 143.15
20O 151.37 150.77 150.63 150.60
21O 155.18 152.60 153.00 152.28
22O 162.03 158.82 158.63 158.71
23O 164.75 159.45 159.47 158.74
24O 168.48 165.55 164.37 164.27
25O 168.38 167.86 166.76 166.09
26O 168.43 165.44 164.60 164.06

σ = 2.66 σ = 2.97 σ = 3.31

4. Conclusions

In summary, an exact particle-number-conserving solution to the SSP Hamiltonian has been
derived with the help of a two-parameterSU(2)affine Lie algebra without central extension. An
infinite-dimensional nonlinear algebra generated by the building blocks of the wavefunctions
for the pairing Hamiltonian is reported. This nonlinear algebra is an infinite-dimensional
extension of the Gaudin algebra [18]. The method can be used to obtain exact values for the
eigenenergies as well as the exact number of the excited levels, both being consistent with
restrictions on the number of excited levels allowed by the Pauli principle. A comparison with
realistic shell-model results, figure 1, shows that the SSP assumption is a good approximation.
Indeed, for the ds-shell case considered the absolute deviations of the eigenenergies of the
SSP Hamiltonian from those of the realistic shell-model calculation are small, showing that
the assumption is reasonable. The present solution, together with those given in [14], means
the general pairing Hamiltonian (1) has exact solutions in three special cases: the SSP limit,
cjj ′ = cj c

∗
j ′ , with nondegenerate single-particle energies; the SSP limit,cjj ′ = cj c

∗
j ′ , with

degenerate single-particle energies; and the ESP case,cjj ′ = |G|ei(δj−δj ′ ), whereδj is an
orbital dependent phase. It needs to be pointed out that the ESP approximation is also a good
approximation for the ds-shell system studied. It should also be clear from the analysis that
there may be other many-body problems that are exactly solvable using infinite-dimensional
algebraic techniques. Further applications of this procedure to realistic nuclear systems will
be published elsewhere.

Acknowledgments

FP is grateful to Dr W E Ormand and others in the nuclear theory group at Louisiana
State University for helpful discussions and critical comments. This work was supported
by the National Science Foundation through Grant no 9603006 and Cooperative Agreement
no 9550481 which includes matching from the Louisiana Board of Regents Support Fund.

References

[1] Racah G 1942Phys. Rev.62438
[2] Bardeen J, Cooper L N and Schrieffer J R 1957Phys. Rev.1081175
[3] Bohr A, Mottelson B R and Pines D 1958Phys. Rev.110936
[4] Belyaev S T 1959Mat.-Fys. Medd. K. Dan. Vidensk. Selsk.3111



1072 F Pan and J P Draayer

[5] Randeria M, Duan J M and Shieh L Y 1989Phys. Rev. Lett.62981
[6] Schmitt-Rink S, Verma C M and Ruckenstein A E 1989Phys. Rev. Lett.63455
[7] Yang C N 1989Phys. Rev. Lett.632144
[8] Cooper D W, Batchlder J S and Taubenblatt M A 1991J. Colloid Interface Sci.144201
[9] Barranco M, Hernandez S and Lombard R J 1992Z. Phys.D 22659

[10] Zeng J Y and Cheng C S 1983Nucl. Phys.A 4051
Zeng J Y and Cheng C S 1984Nucl. Phys.A 41149
Zeng J Y and Cheng C S 1984Nucl. Phys.A 414253

[11] Molique H and Dudek J 1997Phys. Rev.C 561795
[12] Bethe H A 1931Z. Phys.71205
[13] Yang C N 1967Phys. Rev. Lett.191312
[14] Feng Pan, Draayer J P and Ormand W E 1998Phys. Lett.B 4221
[15] Richardson R W 1965J. Math. Phys.6 1034
[16] Richardson R W 1965Phys. Lett.14324
[17] Wildenthal B H 1984Prog. Part. Nucl. Phys.115
[18] Gaudin M 1976J. Physique371087


